
i
i

i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Original Paper

Sequence Analysis

HALS: Fast and High Throughput Algorithm for
PacBio Long Read Self-Correction
Ergude Bao1,3, Fei Xie2,†, Changjin Song1, and Dandan Song2,∗

1School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
2School of Computer Science, Beijing Institute of Technology, Beijing 100081, China and
3Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA

∗To whom correspondence should be addressed.
†Joint first authors.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The third generation PacBio long reads have greatly facilitated sequencing projects with very
large read lengths, but they contain about 15% sequencing errors and need error correction. For the
projects with long reads only, it is challenging to make correction with fast speed, and also challenging
to correct a sufficient amount of read bases, i.e. to achieve high throughput self-correction. MECAT is
currently the fastest self-correction algorithm, but its throughput is relatively small (Xiao et al., 2017).
Results: Here we introduce HALS, a wrapper algorithm of MECAT, to achieve high throughput long
read self-correction while keeping MECAT’s fast speed. HALS finds additional alignments from MECAT
prealigned long reads to improve the correction throughput, and removes misalignments for accuracy.
In addition, HALS also uses the corrected long read regions to correct the uncorrected ones to further
improve the throughput. In our performance tests on E. coli, S. cerevisiae and A. thaliana long reads, HALS
can achieve 28.1-78.9% larger throughput than MECAT. Compared to the other existing self-correction
algorithms, HALS is 8-229x faster, and its throughput is also 10.1-157.8% larger or comparable. The
HALS corrected long reads can be assembled into contigs of 18.0-60.4% larger N50 sizes than MECAT.
Availability: The HALS software can be downloaded for free from this site: https://github.com/xief001/hals.
Contact: sdd@bit.edu.cn

1 Introduction
The third generation sequencing technology is advantageous over the
second generation in its much larger read lengths (Eid et al., 2009). As a
representative of the third generation sequencing technology, the PacBio
Single Molecule Real-Time (SMRT) technology can currently generate
long reads of 5-15K base pairs on average with cost of $0.4-0.8 per
million base pairs (Rhoads and Au, 2015; Lee et al., 2016). The long
reads can overcome length limitation of the second generation short reads,
and can thus facilitate assembling or analyzing complex genome regions
such as GC islands and repeats in downstream. As a result, more and more
sequencing projects have incorporated the long reads. The projects can be
classified into two categories as below.

• Long and short read hybrid projects use long and short reads together
(Philippe et al., 2013; Chen et al., 2014). In these projects, long reads
of low to moderate coverage are used as a complement to short reads
of relatively high coverage, to obtain higher quality results than the
short reads alone.

• Long read only projects use long reads alone (Baker et al., 2014;
Chaisson et al., 2015). Though more expensive, long reads of high
coverage can be used without short reads, to guarantee high quality
results while simplifying the sequencing workflow.

Nevertheless, the long reads contain about 15% sequencing errors
dominated by insertions and deletions, so it is important to correct these
errors. The error correction can be made in two levels: biological level
by Circular Consensus Sequencing (CCS) technology and computational
level by error correction algorithms (Eid et al., 2009). The CCS technology
has to reduce read lengths to a large extent for correction, so the error

© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

i
i

i
i

i
i

i
i

2 E.Bao et al

correction algorithms are usually in favor over the CCS. The current error
correction algorithms can be classified into two categories as below.

• Short read assisted correction algorithms align the corresponding
short reads from the same species to the long reads and correct them,
so they are suitable for the long and short read hybrid projects. PBcR
(Koren et al., 2012), LSC (Au et al., 2013), Proovread (Hackl et al.,
2014) and CoLoRMap (Haghshenas et al., 2016) align the initial short
reads to the long reads for correction, while ECTools1 (Lee et al.,
2014), LoRDEC (Salmela and Rivals, 2014), Jabba (Miclotte et al.,
2016) and HALC (by ourselves Bao and Lan, 2017) align the long
reads to a de Bruijn graph constructed or contigs assembled from the
short reads for correction.

• Self-correction algorithms align the long reads to themselves and find
multiple sequence alignments among the long reads to correct them,
suitable for the long reads only projects. To make alignment, HGAP
(Chin et al., 2013) uses seeding k-mers among the long reads for
dynamic programming, and FALCON (Chin et al., 2016) also uses
the k-mers but applies a fast dynamic programming technique. Canu
(Koren et al., 2017; Berlin et al., 2015) weights and filters the k-
mers to reduce load of the dynamic programming, and MECAT (Xiao
et al., 2017) takes into consideration correlation of the k-mers for the
filtration. Differently, LoRMA (Salmela et al., 2016) aligns the long
reads to de Bruijn graphs constructed from themselves for correction.

For the self-correction algorithms, there are two challenges to address
as below.

• It is challenging to make correction with fast speed, because it is time
consuming to align the long reads of usually several millions to each
other. HGAP, FALCON, Canu and MECAT all seek to address this
challenge.

• It is also challenging to correct a sufficient amount of read bases, i.e.
to achieve high throughput self-correction, because it is also difficult
to align the long reads of 15% errors to each other. LoRMA seeks to
address this challenge.

MECAT has successfully addressed the first challenge, and is currently
the fastest self-correction algorithm (Xiao et al., 2017). Nevertheless, its
throughput is relatively small. This is not economical considering the
higher cost of long reads compared to short reads, and may also affect
quality of the downstream results (Lee et al., 2014). In order to address both
of the two challenges, here we propose HALS, a fast and high throughput
algorithm for the long read self-correction. HALS is a wrapper algorithm
of MECAT, to achieve high throughput while keeping MECAT’s fast speed.
HALS has two novelties as below.

• HALS finds additional alignments from MECAT prealigned long reads
to improve the correction throughput, and removes misalignments for
accuracy. For the prealigned long reads, those aligned with each other
are likely to be from the same genome region, so are found and put
into the same set. For two such sets, if there are shared long reads
existing in both of them, it is possible all the long reads are from the
same genome region, so additional alignments could be found between
the two sets for correction; alternatively, it is possible the shared long
reads are misaligned in one set, so misalignments could be removed
from the set.

• It also uses the corrected long read regions to correct the uncorrected
ones to further improve the throughput. A graph is constructed from

1 ECTools and HGAP, FALCON, Canu and MECAT below are essentially
pipeline algorithms including both error correction and downstream
assembly algorithms.

alignments of the corrected long read regions, and context of the graph
is examined to accurately align the uncorrected long read regions to
the corrected ones for further correction.

2 Methods

2.1 Overview

The HALS algorithm consists of two steps as below, corresponding to the
two novelties above, respectively.

1. Correct with refined MECAT prealigned long reads.

a. Align long reads with each other by MECAT, construct a string graph
based on the alignments (Myers, 2005), and find maximal cliques
with a modified Bron-Kerbosch algorithm in the graph (Eppstein
and Strash, 2011; Eppstein et al., 2010).

b. For two maximal cliques with shared vertices, find additional
alignments between the corresponding long reads or remove
misalignments depending on number of the shared vertices. Make
error correction with the refined alignments.

2. Correct uncorrected long read regions with corrected ones.

a. Align the corrected long read regions with each other, and construct
a second string graph based on the alignments.

b. Align all the long reads obtained from step 1 to paths of the graph.
For each long read region with multiple aligned paths, find the
correct one by referring to not only alignment identities but also
expected amounts of aligned long reads to the paths. Make error
correction for the uncorrected long read regions with the alignments.

In step 1, we construct a string graph recording all alignment information
by MECAT, find maximal cliques in the graph as sets containing long reads
aligned with each other (step 1a), and use the maximal cliques to refine the
alignments for error correction (step 1b). In step 2, we construct a second
string graph recording alignment information among the corrected long
read regions (step 2a), and align all the long reads to paths of the graph
to correct the uncorrected regions (step 2b). Details of these steps are as
below. Figure 1 shows an illustration of the algorithm.

2.2 Maximal cliques in string graph

We align the long reads with each other by MECAT. The parameter
settings are the default of moderate alignment sensitivity and accuracy.
This guarantees sparsity of the constructed string graph (see below).

Based on the alignment, we construct a string graph. Each vertex
is constructed for one long read, and each edge is constructed between
two vertices if the corresponding long reads are aligned with a sufficient
overlap length. Transitive edges are not removed as the ordinary string
graph (Myers, 2005), because all the alignment information should be kept.
The constructed graph is a sparse graph with maximum vertex degree d,
where d is the maximum number of candidate alignments for each long
read, usually 100-200 controlled by the aligner. The graph’s degeneracy is
thus at most d. Sparsity of the graph is useful to guarantee small running
time of the modified Bron-Kerbosch algorithm (see below).

In the graph, we find maximal cliques with a modified Bron-Kerbosch
algorithm (Eppstein and Strash, 2011). In an arbitrary graph, the maximal
clique finding problem is NP-hard, but because the string graph is a sparse
graph with degeneracy at most d, the modified Bron-Kerbosch algorithm
has polynomial time complexity O(dn3d/3), where n is number of the
long reads or vertices. Therefore, running time of the modified Bron-
Kerbosch algorithm is guaranteed relatively small.

i
i

i
i

i
i

i
i

HALS 3

C

A

B D

(B) String graph constructed from initial long read alignments
(C) Second string graph constructed from corrected long read
region alignments

i2 = 85%, m2 = 6-3 = 3

i1 = 88%, m1 = 6-5 = 1

E

J H

G

F D ECBA

J H

…

rA

rB

rC

rD

rE

rF

rG
rH

rJ

rI

rL

Genome

rK

rK

{Long
reads

I

I

rK

(A) Initial long reads generated from underlining genome

… …

…

…

……

…

…

…

…

Fig. 1. Illustrations on the HALS algorithm. (A) Initial long reads rA to rL are generated from two similar genome regions in the underlining target genome. rC (shaded) may not be
fully corrected by MECAT, since it is only aligned to long reads rA and rE , and not aligned to rB and rD from the same genome region; rD (shaded) may be miscorrected, since it
is misaligned to long reads rH , rI and rJ from the other genome region; rK and rL (shaded) may not be corrected, since they are not aligned to any long read from the same genome
region. (B) In algorithm step 1, a string graph is constructed from the initial long read alignments. In the graph, there are four maximal cliques: C1 = {A,C,E}, C2 = {A,B,D,E},
C3 = {D,E, F,G} and C4 = {H,D, I, J}, where C1 and C2 , C2 and C3 , C2 and C4 , and C3 and C4 are two cliques with shared vertices. C1 and C2 are classified in case (i),
and additional alignments are obtained between rC and rB , as well as rC and rD (indicated with dashed lines). As a result, rC can be fully corrected. C2 and C4 are classified in case
(iii), and misalignments are removed between rD and rH , rD and rI , as well as rD and rJ (indicated with crosses). As a result, rD can be accurately corrected. (C) In algorithm step
2, a second string graph is constructed from alignments of the corrected long reads. With limited errors in paths of the graph, rK could be aligned to two alternative paths: P1 = A→ E

and P2 = H → J . Despite P1’s higher alignment identity i1 = 88% than P2’s i2 = 85%, rK is aligned to P2 of much higher expected amount of aligned long reads m2 = 3 than
P1’s m1 = 1. As a result, rK can be corrected with accuracy. Similarly, rL can also be corrected (not shown for simplicity).

2.3 Alignment refinement and error correction

Given two cliques C1 of size c1 and C2 of size c2 with s shared vertices
existing in both cliques, there are basically three cases for them as below.

• Case (i): the corresponding long reads ofC1 andC2 are from the same
genome region, and the long reads of shared vertices are correctly
aligned.

• Case (ii): the corresponding long reads of C1 and C2 are from two
different genome regions, and the long reads of shared vertices span
the genome regions and are correctly aligned.

• Case (iii): the corresponding long reads of C1 and C2 are from two
different genome regions, and the long reads of shared vertices are
from one of the regions and misaligned to the other.

In cases (i) and (ii), s should be relatively large compared to min{c1, c2},
while in case (iii), s should be relatively small. This is based on the
observation that among all alignments, number of the correct alignments
is much larger than the misalignments. In addition, in case (ii), each long
read of a shared vertex should have one region alignable to the long reads
of C1, and a different region to those of C2.

Therefore, to distinguish between cases (i)/(ii) and (iii), we check s
and min{c1, c2}. If s ≥ α1min{c1, c2},C1 andC2 are classified in case
(i)/(ii); otherwise, they are in case (iii), where α1 is a fraction value with
default setting 50%. To further distinguish between cases (i) and (ii), we
check s and s′, where s′ is number of the shared vertices whose long reads
have one region alignable to the long reads ofC1, and a different region to
those ofC2. If s′ ≥ α2s, C1 andC2 are classified in case (ii); otherwise,
they are in case (i), where α2 is a fraction value also with default setting
50%.

For any two cliques classified in case (i), we realign the corresponding
long reads of the cliques to find more alignments. The parameter settings
are -a 1000 -n 200 -k 2 of high alignment sensitivity and relatively low

accuracy. This could improve the error correction throughput. For any two
cliques classified in case (iii), we calculate for each long read of a shared
vertex, its average alignment identity to the long reads of each clique,
and remove it from the clique of lower identity. This could improve the
accuracy. After the refinement of alignments, we make error correction by
MECAT with default parameter settings.

2.4 Correction of uncorrected regions with corrected
regions

Similar to section 2.2, we align the corrected long read regions with each
other, and construct a second string graph. Transitive edges are removed
in the graph. Then we align all the long reads to paths of the graph for error
correction. For the long reads containing both corrected and uncorrected
regions, the corrected regions are aligned uniquely to paths in the graph,
and the uncorrected regions could thus be aligned to paths in between for
correction. For the long reads containing only uncorrected regions, they
could also be aligned to paths of the graph for correction, because of the
graph’s limited errors.

It is possible that an uncorrected long read region has multiple paths
for alignment. To find the correct path, we compare not only alignment
identities, but also expected amounts of aligned long reads to the paths.
The latter is a measurement of paths’ capability to accommodate aligned
long reads, and a long read has higher probability to align to the path of
larger capability (see below). Given a long read regionRwith two aligned
paths P1 of identity i1 and P2 of identity i2, if |i1 − i2| ≥ β1, we find
the path of larger identity as the correct one, where β1 is a difference
value with default setting 5%. Otherwise, the expected amounts of aligned
long reads to the paths m1 and m2 are calculated, respectively, and if
|m1−m2
m1+m2

| ≥ β2, we find the path of larger amount as the correct one,
where β2 is also a difference value with default setting 20%. For long
read regions with more than two aligned paths, alignment identities and

i
i

i
i

i
i

i
i

4 E.Bao et al

expected amounts of aligned long reads are compared in pairs to find the
correct path.

Here, the expected amount of aligned long reads to a path P is
calculated as the expected amount of long reads mg from the path’s
genome region minus the amount of long reads m′p forming the path.
m′p can be recorded when the graph is constructed, and mg is calculated
as below. Because the probability that a long read of length l is from
a genome region of length ∆g is ∆g+2(l−o)

G
, mg is calculated as∑n

i=0
∆g+2(li−o)

G
, whereo is minimum required overlap length between

the long read and genome region, G is size of the genome, li is length of
the ith long read, and again, n is number of the long reads. Furthermore,

because ∆g is about P ’s length ∆p, andG can be estimated as
∑n

j=0 lj
c

,

mg is further refined as
∑n

i=0

∑n
j=0

∆p+2(li−o)

lj/c
, where c is coverage

of the long reads. Note that this calculation assumes a path does not
correspond to multiple genome regions. This is reasonable, since one
alternatively aligned path of a long read region represents a single genome
region in most cases in string graph (Myers, 2005).

2.5 Implementation of the HALS software

The HALS software is implemented in C++ for linux platform. It contains
data structures as below.

• An n item adjacency list for the string graph in algorithm step 1. Its
lists have the maximum length d, because of the graph’s sparsity.

• An n item hash table for the read-clique mapping. It is used to find all
the cliques with shared vertices.

• AO((n−d)3d/3) item hash table for the clique-read mapping, where
O((n − d)3d/3) is the maximum possible number of cliques in the
graph (Eppstein and Strash, 2011). It is used to find all the shared
vertices for any two cliques.

• An n′ item adjacency list for the second string graph in algorithm step
2, where n′ is number of the corrected long read regions.

Input of HALS is the initial long reads, and the outputs include the error
corrected (i) full long reads, (ii) trimmed long reads that do not contain the
uncorrected regions in read heads and tails, and (iii) split long reads that
do not contain the uncorrected regions and very short corrected regions
(<500 bp; Salmela and Rivals (2014)).

3 Evaluation

3.1 Experimental design

3.1.1 Test of error correction performance
To evaluate HALS’s performance, we ran HALS, MECAT and the other
existing self-correction algorithms HGAP, LoRMA, FALCON and Canu
on three sets of long reads from species: E. coli, S. cerevisiae, A. thaliana
of genome sizes 5M bp, 12M bp and 125M bp, respectively. Coverage
of the long reads was all 100x, meeting the requirement of most long
read only projects. We also ran some typical short read assisted correction
algorithms PBcR, CoLoRMap and ECTools on the long reads, together
with the corresponding short reads from the same species. Coverage of the
short reads was 50x, 38x and 33x, respectively, meeting the requirement
of most long and short read hybrid projects. After error correction, we
aligned the corrected long reads to the corresponding target genomes,
to access quality of the long reads. Note that not all the existing short
read assisted correction algorithms were compared, because they are in a
different category from HALS.

3.1.2 Test with various long read coverage and parameter settings
HALS’s performance is mainly affected by coverage of the long reads,
because it is inputted with long reads alone. Hence, it is interesting to
see HALS’s performance with various long read coverage, and especially,

the performance change compared to MECAT and the other existing self-
correction algorithms. To do this, we varied coverage of the E. coli long
reads from 50x to 200x, and ran and compared HALS, MECAT, HGAP,
LoRMA, FALCON and Canu.

In addition, HALS’s performance could also be affected by its
parameter settings. Specifically, the parameters include the two fraction
values α1 and α2 to distinguish between cases (i)-(iii) as discussed in
section 2.3, and the two difference values β1 and β2 to find the correct
aligned paths as discussed in section 2.4. It is also interesting to see HALS’s
performance with various settings of the parameters. To do this, we varied
α1 and α2 from 30% to 70%, varied β1 from 1% to 15%, and varied β2

from 10% to 40%, and ran HALS on the E. coli long reads of 100x. Similar
to above, after error correction, we aligned the corrected long reads to the
corresponding target genome, to access quality of the long reads.

3.1.3 Test of long read assemblies
HALS’s performance influences downstream assembly and analysis as
discussed in section 1. Hence, it is interesting to see some downstream
assembly results from the HALS corrected long reads. To do this, we
used FALCON’s assembly algorithm FALCON∗2 (Chin et al., 2016) and
Canu’s assembly algorithm Canu∗ (Koren et al., 2017), and assembled the
corrected S. cerevisiae and A. thaliana long reads. To make comparison,
we also assembled the MECAT corrected long reads. Then we aligned the
assembled contigs to the corresponding target genomes, to access quality
of the contigs. Note that this test is much simplified, because this study
focuses on long read error correction rather than assembly. Also note that
MECAT does not have a standalone assembly algorithm, but applies Canu’s
assembly algorithm.

All of the algorithms’ software was in default settings, except the test of
various parameter settings as discussed in section 3.1.2. Only the corrected
split long reads were compared and used for assemblies in these tests,
so that the results could not be affected by the uncorrected bases. All
experiments were performed in a computing node of a computer cluster
with 32 cores of 2.3 GHz and 1,024 GB memory.

3.2 Data sets and performance measurements

3.2.1 Data sets
The genomic long reads of E. coli, S. cerevisiae and A. thaliana
were downloaded from NCBI accessions SRX1155577, ERX1725434
and SRX533607, respectively. The corresponding target genomes were
from NCBI accessions NC_000913.3, NC_001133.9 and the Ensembl
Plant FTP, respectively. The corresponding short reads were from NCBI
accessions ERR022075, SRR567755 and ERR469286, respectively.

3.2.2 Performance measurements
We aligned the error corrected split long reads to the corresponding target
genomes to access their quality. The BWA-MEM aligner was used for
these alignments, because it is a typical aligner for genomic sequences
with fast speed and high sensitivity (Li and Durbin, 2010). We made the
following measurements: (i) throughput (TH) is the number of corrected
and outputted bases, and throughput ratio (THR) is the throughput over
the total number of initial long read bases (throughput ratio of the initial
long reads is 100%); (ii) alignment ratio is the number of aligned bases
over the total number of outputted bases; (iii) alignment identity is the
identity of aligned bases; (iv) genome fraction is the number of genome
bases aligned by long reads over the total number of genome bases.

2 FALCON’s assembly algorithm and Canu’s assembly algorithm below
are represented as FALCON∗ and Canu∗, respectively, to distinguish from
the error correction algorithms.

i
i

i
i

i
i

i
i

HALS 5

Table 1. Evaluation of error correction performance. The long reads in tests (a)-(c) are from E. coli, S. cerevisiae and A. thaliana, respectively. The error corrected
long reads by MECAT and HALS (below dashed line), and the other existing self-correction algorithms HGAP, LoRMA, FALCON and Canu (above dashed line),
and by short read assisted correction algorithms PBcR, CoLoRMap and ECTools (in gray) using additional short reads are compared in each test. The performance
measurements are listed in section 3.2.2.

Method Throughput (bp)
Alignment

ratio
Alignment

identity
Genome
fraction

Sensitivity Gain Specificity Time (h) Memory (GB)

(a) Long reads of E. coli

Initial 513,788,653 47.8% 86.4% 100% - - - - -

PBcR1 70,389,045 99.9% 99.9% 88.5% - - - 161.7 5.4

CoLoRMap 144,888,400 99.2% 99.9% 91.7% 28.1% 27.5% 99.9% 2.3 5.4

ECTools 59,085,695 99.6% 99.6% 92.9% 12.3% 11.1% 99.9% 44.6 6.4

HGAP 96,592,267 97.8% 98.2% 99.3% 15.0% 12.6% 99.6% 59.7 183.9

LoRMA 52,406,443 98.7% 98.9% 29.2% 8.7% 8.1% 99.9% 13.6 15.6

FALCON1 131,529,895 98.0% 98.5% 98.5% - - - 4.0 53.6

Canu 55,589,500 97.7% 97.3% 96.8% 8.6% 6.9% 99.7% 62.4 87.0

MECAT 75,526,932 97.5% 98.0% 97.8% 12.1% 9.9% 99.6% 0.1 3.8

HALS 135,126,416 97.7% 98.0% 98.0% 22.1% 18.5% 99.3% 0.5 5.9

(b) Long reads of S. cerevisiae

Initial 1,186,480,653 52.7% 87.0% 100% - - - - -

PBcR1 195,769,308 99.9% 99.9% 96.1% - - - 144.0 10.7

CoLoRMap 352,384,754 98.6% 99.8% 99.7% 29.4% 28.0% 99.8% 10.3 8.6

ECTools 268,114,628 99.7% 99.6% 98.5% 18.2% 16.8% 99.8% 1,333.6 5.1

HGAP 225,431,324 99.2% 99.2% 99.9% 18.2% 16.8% 99.8% 39.3 26.8

LoRMA 164,920,811 99.9% 99.9% 42.7% 16.1% 14.5% 99.8% 30.9 15.6

FALCON1 365,436,041 99.5% 99.8% 99.9% - - - 30.2 80.5

Canu 251,533,898 99.1% 99.0% 99.9% 20.1% 18.5% 99.8% 137.6 87.0

MECAT 196,955,788 99.0% 99.2% 99.8% 16.1% 14.5% 99.1% 0.1 7.0

HALS 320,349,776 99.1% 99.3% 99.2% 26.4% 24.2% 99.7% 0.6 23.1

(c) Long reads of A. thaliana

Initial 12,514,544,644 34.9% 83.3% 99.9% - - - - -

PBcR1 3,053,547,766 96.2% 96.5% 97.1% - - - 1,472.9 19.3

CoLoRMap 4,555,294,250 96.8% 96.3% 99.2% 35.1% 27.6% 98.2% 197.5 18.2

ECTools 1,001,003,572 95.8% 95.5% 98.1% 7.8% 6.5% 99.8% 87,321.6 19.3

FALCON1 4,355,061,536 91.1% 90.6% 99.4% - - - 1,214.4 102.5

Canu 3,992,139,741 91.0% 90.2% 99.7% 24.4% 16.6% 98.5% 175.2 182.0

MECAT 3,741,848,849 91.1% 90.6% 99.7% 24.4% 16.7% 98.7% 0.8 21.5

HALS 4,793,070,599 91.0% 90.4% 99.7% 30.7% 22.2% 98.3% 17.9 83.1

1 Some measurements are not available without the correspondence information between the initial long reads and corrected ones.

Then we used the Error Correction Evaluation Toolkit for split long
reads implemented by ourselves (Bao and Lan, 2017), and obtained in
the outputted bases, the number of corrected errors (true positive or TP),
the number of falsely converted correct bases (false positive or FP), the
number of uncorrected errors (false negative or FN), and the number of
unconverted correct bases (true negative or TN). With these numbers, due
to the errors’ uniform distribution in long reads, we can estimate the total
number of errors in the initial long reads as the number of errors in the
outputted bases over the throughput ratio, i.e. EI = TP+FN

THR
. We can

also estimate the total number of correct bases in the initial long reads
as the number of correct bases in the outputted bases over the throughput
ratio, i.e. CI = TN+FP

THR
, and thus the number of correct bases in the

discarded bases as the total number of correct bases in the initial long
reads minus the number of correct bases in the outputted bases, i.e.CD =

CI− (TN+FP). Therefore, we made the following measurements: (v)
sensitivity is calculated as TP

EI
; (vi) specificity is calculated as TN+CD

CI
;

(vii) gain is the number of errors effectively corrected without introducing
new ones over the total number of errors in the initial long reads, and
calculated as TP−FP

EI
.

In addition, we also aligned the assembled contigs to the corresponding
genomes. Following Chin et al. (2016), we used the QUAST toolkit
(Gurevich et al., 2013), and made the following measurements: (viii)
assembly size is the total length of contigs; (ix) N contigs is the number of

contigs; (x) N50 size is the contig size at 50% of the total number of contig
bases; (xi) N N50 is the number of contigs of lengths larger than the N50
size; (xii) Max contig size is the maximum contig size.

3.3 Results

3.3.1 Results of error correction performance
Results on the E. coli long reads are listed in Table 1(a). (i) For the initial
uncorrected long reads of 514M bp, the alignment ratio and alignment
identity are 47.8% and 86.4%, respectively, indicating a large amount of
errors. (ii) After error correction, the throughput of MECAT is 76M bp,
and the alignment ratio and alignment identity are about 100%, while the
throughput of HALS is 135M bp, and the alignment ratio and alignment
identity are also about 100%. The throughput of HALS is 78.9% larger than
MECAT. (iii) The running time and memory usage of the other existing
self-correction algorithms HGAP, LoRMA, FALCON and Canu are 4.0-
62.4 hours and 15.6-183.9 GB, respectively, while those of HALS are
0.5 hours and 5.9 GB, respectively. HALS is 8-125x faster than all of
them. In addition, the throughput of these algorithms is 52-131M bp,
and that of HALS is also 39.9-157.8% larger than HGAP, LoRMA and
Canu, and comparable to FALCON. (iv) As to the existing short read
assisted correction algorithms PBcR, CoLoRMap and ECTools, HALS
is 5-323x faster than all of them, and the throughput of HALS is 92.0-
128.7% larger than PBcR and ECTools, even though the latter were

i
i

i
i

i
i

i
i

6 E.Bao et al

Table 2. Evaluation with various coverage of the E. coli long reads. The coverage
in tests (a)-(d) is 50x, 100x, 150x and 200x, respectively. The error corrected
long reads by MECAT and HALS (below dashed line), and the other existing
self-correction algorithms HGAP, LoRMA, FALCON and Canu (above dashed
line) are compared in each test. The performance measurements are listed in
section 3.2.2.

Method Throughput (bp)
Alignment

ratio
Alignment

identity
Time (h)

Memory
(GB)

(a) Long reads of 50x coverage

Initial 256,894,327 48.0% 86.5% - -

HGAP 43,415,141 97.8% 98.0% 57.5 163.1

LoRMA 2,568,943 98.9% 99.2% 10.3 14.5

FALCON 29,029,059 98.0% 98.4% 1.1 53.6

Canu 35,118,079 98.2% 97.6% 60.8 87.0

MECAT 16,184,343 97.3% 97.8% 0.1 2.1

HALS 53,434,020 97.4% 97.3% 0.2 5.9

(b) Long reads of 100x coverage

Initial 513,788,653 47.8% 86.4% - -

HGAP 96,592,267 97.8% 98.2% 59.7 183.9

LoRMA 52,406,443 98.7% 98.9% 13.6 15.6

FALCON 131,529,895 98.0% 98.5% 4.0 53.6

Canu 55,589,500 97.7% 97.3% 62.4 87.0

MECAT 75,526,932 97.5% 98.0% 0.1 3.8

HALS 135,126,416 97.7% 98.0% 0.5 5.9

(c) Long reads of 150x coverage

Initial 770,682,980 47.7% 86.1% - -

HGAP 133,328,155 97.8% 98.1% 85.7 203.8

LoRMA 167,238,207 98.8% 98.9% 16.8 16.1

FALCON 237,370,358 98.4% 98.6% 8.5 56.5

Canu 101,318,583 98.2% 97.6% 63.2 87.0

MECAT 134,098,838 97.6% 98.0% 0.1 7.5

HALS 217,332,600 97.8% 98.1% 0.9 7.5

(d) Long reads of 200x coverage

Initial 1,027,577,306 48.1% 86.1% - -

HGAP 172,632,987 97.8% 98.1% 158.2 214.6

LoRMA 265,114,945 98.8% 98.9% 30.8 22.9

FALCON 313,411,078 98.7% 98.4% 31.7 56.9

Canu 111,737,700 98.3% 97.6% 63.2 87.0

MECAT 205,515,461 97.7% 98.1% 0.3 8.0

HALS 311,355,924 97.8% 98.2% 3.9 8.0

inputted with additional 33-50x short reads. Note that for PBcR and
FALCON, the sensitivity, gain and specificity are not available without the
correspondence information between the initial long reads and corrected
ones.

Results on the S. cerevisiae long reads are listed in Table 1(b). The
throughput of HALS is 62.7% larger than MECAT, and HALS is 50-229x
faster than the other existing self-correction algorithms HGAP, LoRMA,
FALCON and Canu. In addition, the throughput of HALS is also 27.4-
94.2% larger than HGAP, LoRMA and Canu. Results on the A. thaliana
long reads are listed in Table 1(c). The throughput of HALS is 28.1%
larger than MECAT, and HALS is 10-68x faster than the other existing
self-correction algorithms FALCON and Canu. In addition, the throughput
of HALS is also 10.1-20.1% larger than FALCON and Canu. Note that
results of HGAP and LoRMA on the A. thaliana long reads are not shown,
because they were designed for relatively small genomes and could not
finish processing on the larger genome. These results indicate HALS can
achieve high throughput while keeping MECAT’s fast speed.

3.3.2 Results with various long read coverage and parameter settings
Results with various coverage of the E. coli long reads are listed in Table 2.
For all the algorithms, the throughput and running time increase together

…

Long read

12,033

E. coli

Genome
…

1,428,679

Long read

20,672

E. coli

Genome
…

(A)

(B)

…

…

1,430,845 3,199,301 3,203,249 3,205,477

3,860 6,0360

… … …

…
9,679 11,555 15,925

2,079,308 2,080,933 3,181,373 3,182,998 3,186,784 4,364,860 4,366,488

Fig. 2. Illustrations on HALS’s function in finding correct paths on the E. coli long reads.
(A) A long read region in the 12,033th long read from target genome region [3,203,249;
3,205,477] could be aligned to two paths of genome regions [1,428,679; 1,430,845] and
[3,203,249; 3,205,477] (shaded), and HALS can find the correct path of genome region
[3,203,249; 3,205,477] for it. (B) A long read region in the 20,672th long read from target
genome region [3,181,373; 3,182,998] could be aligned to three paths of genome regions
[2,079,308; 2,080,933], [3,181,373; 3,182,998] and [4,364,860; 4,366,488] (shaded), and
HALS can also find the correct path of genome region [3,181,373; 3,182,998] for it.

Table 3. Evaluation of long read assemblies. The contigs in tests (a)-(b) are
assembled from S. cerevisiae and A. thaliana long reads, respectively. The long
reads are error corrected by MECAT and HALS in each test, and the contigs
are assembled by FALCON∗ and Canu∗ from each set of corrected long reads.
The performance measurements are listed in section 3.2.2.

Method
Assembly
size (bp)

N
Contigs

N50 size
(bp)

N
N50

Max contig
size (bp)

(a) Contigs of S. cerevisiae

MECAT+FALCON∗ 11,573,511 132 144,568 28 341,847

MECAT+Canu∗ 11,990,018 176 106,985 33 448,717

HALS+FALCON∗ 11,627,851 98 199,013 20 581,831

HALS+Canu∗ 12,261,578 118 171,594 20 545,493

(b) Contigs of A. thaliana

MECAT+FALCON∗ 121,861,164 205 3,446,298 10 10,842,197

MECAT+Canu∗ 121,429,989 184 4,229,580 8 12,141,698

HALS+FALCON∗ 124,464,586 348 4,065,882 8 14,324,148

HALS+Canu∗ 122,645,145 272 5,837,812 7 13,695,512

with the coverage. For all the coverage, the throughput of HALS is 51.5-
230.2% larger than MECAT, and HALS is 6-304x faster than the other
existing self-correction algorithms. In addition, the throughput of HALS
is also 17.4-1980.0% larger than HGAP, LoRMA and Canu, and in general
comparable to FALCON. These results indicate HALS is scalable and
efficient with various long read coverage.

Results with various parameter settings are not shown, because the
difference of the results is relatively small and within<5%. The difference
with variousα1 andα2 is small, because their influence is within algorithm
step 1b, while the remaining algorithm steps 2a and 2b are complementary
to this step. The difference with various β1 and β2 is also small, because it
is not a dominating situation to align one long read region to multiple paths
of the string graph in algorithm step 2b. However, this does not downgrade
the importance to decide the correct paths in this step. As shown in Figure 2,
on the E. coli long reads, a long read region in the 12,033th long read from
target genome region [3,203,249; 3,205,477] could be aligned to two paths
of genome regions [1,428,679; 1,430,845] and [3,203,249; 3,205,477], and
HALS can find the correct path of genome region [3,203,249; 3,205,477]
for it. In addition, a long read region in the 20,672th long read from
target genome region [3,181,373; 3,182,998] could be aligned to three
paths of genome regions [2,079,308; 2,080,933], [3,181,373; 3,182,998]
and [4,364,860; 4,366,488], and HALS can also find the correct path of
genome region [3,181,373; 3,182,998] for it.

i
i

i
i

i
i

i
i

HALS 7

3.3.3 Results of long read assemblies
Results on the S. cerevisiae long reads are listed in Table 3(a). The
MECAT corrected long reads are assembled into 132-176 contigs of N50
sizes 106,985-144,568 bp and max contig sizes 341,847-448,717 bp. The
HALS corrected long reads are assembled into 98-118 contigs of N50 sizes
171,594-199,013 bp and max contig sizes 545,493-581,831 bp. The N50
sizes with HALS are 37.7-60.4% larger than MECAT, and the max contig
sizes are also 21.6-70.2% larger.

Results on the A. thaliana long reads are listed in Table 3(b). The
N50 sizes of contigs assembled from the HALS corrected long reads are
18.0-38.0% larger than MECAT, and the max contig sizes are also 12.8-
32.1% larger. Interestingly, the number of contigs with HALS is also a
little larger than MECAT. This is probably because more alleles could be
assembled from the HALS corrected long reads. These results indicate
HALS corrected long reads can be assembled into high quality contigs.

4 Conclusions
This study introduces HALS, a wrapper algorithm of MECAT, to achieve
high throughput long read self-correction while keeping MECAT’s fast
speed. HALS finds maximal cliques in a string graph constructed from
MECAT prealigned long reads, and refines the alignments for correction.
HALS also aligns the long reads to paths of a second string graph
constructed from the corrected long read regions for further correction,
considering not only alignment identities but also expected amounts of
aligned long reads to the paths. As a result, HALS can achieve 28.1-230.2%
larger throughput than MECAT, and is also 8-119x faster than the other
existing self-correction algorithms. In addition, HALS can also achieve
17.4-157.8% larger or comparable throughput to the other existing self-
correction algorithms. The HALS corrected long reads can be assembled
into contigs of 18.0-60.4% larger N50 sizes than MECAT. In the future,
we will expand this work in the following two directions. (1) Scale of
HALS will be improved to handle long reads from genomes of ≥1G bp,
e.g. human genome. (2) HALS will be adapted to process long reads
of different characteristics from other platforms, e.g. Oxford Nanopore
platform.

Acknowledgements
We thank Lingxiao Lan in our group, for implementing the Error
Correction Evaluation Toolkit for split long reads. We acknowledge the
support of the core facilities at the Institute for Integrative Genome Biology
(IIGB), the University of California, Riverside.

Funding
This work was supported by grants from the National Science Foundation
of China [61502027 to E.B.], and the Fundamental Research Funds for the
Central Universities [2015RC045 to E.B.].

References
Au, K. F., Sebastiano, V., Afshar, P. T., Durruthy, J. D., Lee, L., Williams,

B. A., van Bakel, H., Schadt, E. E., Reijo-Pera, R. A., Underwood, J. G., et al.
(2013). Characterization of the human esc transcriptome by hybrid sequencing.
Proceedings of the National Academy of Sciences, 110(50), E4821–E4830.

Baker, K. S., Mather, A. E., McGregor, H., Coupland, P., Langridge, G. C., Day,
M., Deheer-Graham, A., Parkhill, J., Russell, J. E., and Thomson, N. R. (2014).

The extant world war 1 dysentery bacillus nctc1: a genomic analysis. The Lancet,
384(9955), 1691–1697.

Bao, E. and Lan, L. (2017). Halc: High throughput algorithm for long read error
correction. BMC bioinformatics, 18(1), 204.

Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., and Phillippy,
A. M. (2015). Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nature biotechnology, 33(6), 623–630.

Chaisson, M. J., Huddleston, J., Dennis, M. Y., Sudmant, P. H., Malig, M.,
Hormozdiari, F., Antonacci, F., Surti, U., Sandstrom, R., Boitano, M., et al.
(2015). Resolving the complexity of the human genome using single-molecule
sequencing. Nature, 517(7536), 608–611.

Chen, X., Bracht, J. R., Goldman, A. D., Dolzhenko, E., Clay, D. M., Swart,
E. C., Perlman, D. H., Doak, T. G., Stuart, A., Amemiya, C. T., et al. (2014).
The architecture of a scrambled genome reveals massive levels of genomic
rearrangement during development. Cell, 158(5), 1187–1198.

Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C.,
Clum, A., Copeland, A., Huddleston, J., Eichler, E. E., et al. (2013). Nonhybrid,
finished microbial genome assemblies from long-read smrt sequencing data. Nature
methods, 10(6), 563–569.

Chin, C.-S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum,
A., Dunn, C., OâŁ™Malley, R., Figueroa-Balderas, R., Morales-Cruz, A.,
et al. (2016). Phased diploid genome assembly with single molecule real-time
sequencing. Nature methods, 13(12), 1050.

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D.,
Baybayan, P., Bettman, B., et al. (2009). Real-time dna sequencing from single
polymerase molecules. Science, 323(5910), 133–138.

Eppstein, D. and Strash, D. (2011). Listing all maximal cliques in large sparse
real-world graphs. Experimental Algorithms, pages 364–375.

Eppstein, D., Löffler, M., and Strash, D. (2010). Listing all maximal cliques in
sparse graphs in near-optimal time. In International Symposium on Algorithms
and Computation, pages 403–414. Springer.

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). Quast: quality
assessment tool for genome assemblies. Bioinformatics, page btt086.

Hackl, T., Hedrich, R., Schultz, J., and Förster, F. (2014). proovread: large-scale high-
accuracy pacbio correction through iterative short read consensus. Bioinformatics,
page btu392.

Haghshenas, E., Hach, F., Sahinalp, S. C., and Chauve, C. (2016). Colormap:
Correcting long reads by mapping short reads. Bioinformatics, 32(17), i545–i551.

Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G.,
Wang, Z., Rasko, D. A., McCombie, W. R., Jarvis, E. D., et al. (2012). Hybrid
error correction and de novo assembly of single-molecule sequencing reads. Nature
biotechnology, 30(7), 693–700.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy,
A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer
weighting and repeat separation. Genome research, 27(5), 722–736.

Lee, H., Gurtowski, J., Yoo, S., Marcus, S., McCombie, W. R., and Schatz, M.
(2014). Error correction and assembly complexity of single molecule sequencing
reads. BioRxiv, page 006395.

Lee, H., Gurtowski, J., Yoo, S., Nattestad, M., Marcus, S., Goodwin, S., McCombie,
W. R., and Schatz, M. (2016). Third-generation sequencing and the future of
genomics. bioRxiv, page 048603.

Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with burrows–
wheeler transform. Bioinformatics, 26(5), 589–595.

Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de Peer, Y., Audenaert,
P., and Fostier, J. (2016). Jabba: hybrid error correction for long sequencing reads.
Algorithms for Molecular Biology, 11(1), 1.

Myers, E. W. (2005). The fragment assembly string graph. Bioinformatics,
21(suppl_2), ii79–ii85.

Philippe, N., Legendre, M., Doutre, G., Couté, Y., Poirot, O., Lescot, M., Arslan,
D., Seltzer, V., Bertaux, L., Bruley, C., et al. (2013). Pandoraviruses: amoeba
viruses with genomes up to 2.5 mb reaching that of parasitic eukaryotes. Science,
341(6143), 281–286.

Rhoads, A. and Au, K. F. (2015). Pacbio sequencing and its applications. Genomics,
proteomics & bioinformatics, 13(5), 278–289.

Salmela, L. and Rivals, E. (2014). Lordec: accurate and efficient long read error
correction. Bioinformatics, page btu538.

Salmela, L., Walve, R., Rivals, E., and Ukkonen, E. (2016). Accurate selfcorrection
of errors in long reads using de bruijn graphs. Bioinformatics, page btw321.

Xiao, C.-L., Chen, Y., Xie, S.-Q., Chen, K.-N., Wang, Y., Han, Y., Luo, F., and
Xie, Z. (2017). Mecat: fast mapping, error correction, and de novo assembly for
single-molecule sequencing reads. Nature Methods.

